Tradeoffs in Modeling Context Dependency in Complex Trait Genetics

Author:

Weine Eric123,Smith Samuel Pattillo12ORCID,Knowlton Rebecca Kathryn4,Harpak Arbel12ORCID

Affiliation:

1. Department of Integrative Biology, The University of Texas at Austin

2. Department of Population Health, The University of Texas at Austin

3. Department of Human Genetics, University of Chicago

4. Department of Statistics and Data Sciences, The University of Texas at Austin

Abstract

Genetic effects on complex traits may depend on context, such as age, sex, environmental exposures or social settings. However, it is often unclear if the extent of context dependency, or Gene-by-Environment interaction (GxE), merits more involved models than the additive model typically used to analyze data from genome-wide association studies (GWAS). Here, we suggest considering the utility of GxE models in GWAS as a tradeoff between bias and variance parameters. In particular, We derive a decision rule for choosing between competing models for the estimation of allelic effects. The rule weighs the increased estimation noise when context is considered against the potential bias when context dependency is ignored. In the empirical example of GxSex in human physiology, the increased noise of context-specific estimation often outweighs the bias reduction, rendering GxE models less useful when variants are considered independently. However, we argue that for complex traits, the joint consideration of context dependency across many variants mitigates both noise and bias. As a result, polygenic GxE models can improve both estimation and trait prediction. Finally, we exemplify (using GxDiet effects on longevity in fruit flies) how analyses based on independently ascertained “top hits” alone can be misleading, and that considering polygenic patterns of GxE can improve interpretation.

Publisher

eLife Sciences Publications, Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3