The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins

Author:

Shurtleff Matthew J1ORCID,Itzhak Daniel N2,Hussmann Jeffrey A1,Schirle Oakdale Nicole T13,Costa Elizabeth A1ORCID,Jonikas Martin1,Weibezahn Jimena1,Popova Katerina D1,Jan Calvin H1,Sinitcyn Pavel2ORCID,Vembar Shruthi S4,Hernandez Hilda5,Cox Jürgen2,Burlingame Alma L5,Brodsky Jeffrey L4,Frost Adam36ORCID,Borner Georg HH2ORCID,Weissman Jonathan S17ORCID

Affiliation:

1. Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States

2. Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany

3. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States

4. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States

5. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States

6. Chan Zuckerberg Biohub, San Francisco, United States

7. Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States

Abstract

The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains such as charged residues in ion channels are often functionally important, but could pose a challenge during cotranslational membrane insertion and folding. Our systematic proteomic approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC) binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for charged residues. The EMC can remain associated after completion of translation, which both protects clients from premature degradation and allows recruitment of substrate-specific and general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane proteins containing destabilizing features, thereby mitigating the trade-off between function and stability.

Funder

Howard Hughes Medical Institute

National Institutes of Health

Helen Hay Whitney Foundation

Jane Coffin Childs Memorial Fund for Medical Research

Sandler Foundation

American Asthma Foundation

Louis-Jeantet Foundation

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3