Mediator kinase inhibition suppresses hyperactive interferon signaling in Down syndrome

Author:

Cozzolino Kira1,Sanford Lynn23,Hunter Samuel23,Molison Kayla1,Erickson Benjamin45,Jones Taylor1,Courvan Meaghan CS12367,Ajit Deepa8,Galbraith Matthew D79,Espinosa Joaquin M79ORCID,Bentley David L45,Allen Mary A3,Dowell Robin D23,Taatjes Dylan J1ORCID

Affiliation:

1. Dept. of Biochemistry, University of Colorado

2. Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado

3. BioFrontiers Institute, University of Colorado

4. Dept. Biochemistry and Molecular Genetics, University of Colorado School of Medicine

5. UC-Denver RNA Bioscience Initiative

6. Crnic Institute Boulder Branch

7. Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus

8. Metabolon, Inc., Durham

9. Dept. of Pharmacology, University of Colorado Anschutz Medical Campus

Abstract

Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 45min - 24h timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), and this occurred through rapid suppression of IFN-responsive transcription factor activity. Moreover, we discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and untargeted metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways, including broad up-regulation of anti-inflammatory lipid mediators, whose levels were elevated during hyperactive IFN signaling. A subset of these lipid mediators (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing a mechanistic link between Mediator kinase activity and nuclear receptor function. Collectively, our results identify new mechanisms by which CDK8/CDK19 regulate gene expression, and establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3