EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence

Author:

Gautheron Jeremie12ORCID,Morisseau Christophe3,Chung Wendy K45,Zammouri Jamila12,Auclair Martine12,Baujat Genevieve6,Capel Emilie12,Moulin Celia12,Wang Yuxin3,Yang Jun3,Hammock Bruce D3ORCID,Cerame Barbara7,Phan Franck289,Fève Bruno1210,Vigouroux Corinne121011,Andreelli Fabrizio289,Jeru Isabelle1211ORCID

Affiliation:

1. Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France

2. Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France

3. Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States

4. Department of Pediatrics, Columbia University Irving Medical Center, New York, United States

5. Deparment of Medicine, Columbia University Irving Medical Center, New York, United States

6. Service de Génétique Clinique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France

7. Goryeb Children’s Hospital, Atlantic Health Systems, Morristown Memorial Hospital, Morristown, United States

8. Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France

9. Sorbonne Université-Inserm UMRS_1269, Paris, France

10. Centre National de Référence des Pathologies Rares de l’Insulino-Sécrétion et de l’Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France

11. Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France

Abstract

Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.

Funder

Mairie de Paris

Société Francophone du Diabète

Fondation pour la Recherche Médicale

National Institutes of Health

National Institute of Environmental Health Sciences

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3