Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate

Author:

ARAND Michael1,MÜLLER Frank1,MECKY Astrid1,HINZ Willy12,URBAN Phillipe2,POMPON Denis2,KELLNER Roland3,OESCH Franz1

Affiliation:

1. Institute of Toxicology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany

2. Centre of Molecular Genetics, CNRS, F-91198 Gif-sur-Yvette, France

3. Institute of Physiological Chemistry and Pathobiochemistry, University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany

Abstract

Microsomal epoxide hydrolase (mEH) belongs to the superfamily of α/β-hydrolase fold enzymes. A catalytic triad in the active centre of the enzyme hydrolyses the substrate molecules in a two-step reaction via the intermediate formation of an enzyme-substrate ester. Here we show that the mEH catalytic triad is composed of Asp226, Glu404 and His431. Replacing either of these residues with non-functional amino acids results in a complete loss of activity of the enzyme recombinantly expressed in Saccharomyces cerevisiae. For Glu404 and His431 mutants, their structural integrity was demonstrated by their retained ability to form the substrate ester intermediate, indicating that the lack of enzymic activity is due to an indispensable function of either residue in the hydrolytic step of the enzymic reaction. The role of Asp226 as the catalytic nucleophile driving the formation of the ester intermediate was substantiated by the isolation of a peptide fraction carrying the 14C-labelled substrate after cleavage of the ester intermediate with cyanogen bromide. Sequence analysis revealed that one of the two peptides within this sample harboured Asp226. Surprisingly, the replacement of Glu404 with Asp greatly increased the Vmax of the enzyme with styrene 7,8-oxide (23-fold) and 9,10-epoxystearic acid (39-fold). The increase in Vmax was paralleled by an increase in Km with both substrates, in line with a selective enhancement of the second, rate-limiting step of the enzymic reaction. Owing to its enhanced catalytic properties, the Glu404 → Asp mutant might represent a versatile tool for the enantioselective bio-organic synthesis of chiral fine chemicals. The question of why all native mEHs analysed so far have a Glu in place of the acidic charge relay residue is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3