Human muscle spindles are wired to function as controllable signal-processing devices

Author:

Dimitriou Michael1ORCID

Affiliation:

1. Physiology Section, Department of Integrative Medical Biology, Umeå University

Abstract

Muscle spindles are encapsulated sensory organs found in most of our muscles. Prevalent models of sensorimotor control assume the role of spindles is to reliably encode limb posture and movement. Here, I argue that the traditional view of spindles is outdated. Spindle organs can be tuned by spinal γ motor neurons that receive top-down and peripheral input, including from cutaneous afferents. A new model is presented, viewing γ motor activity as an intermediate coordinate transformation that allows multimodal information to converge on spindles, creating flexible coordinate representations at the level of the peripheral nervous system. That is, I propose that spindles play a unique overarching role in the nervous system: that of a peripheral signal-processing device that flexibly facilitates sensorimotor performance, according to task characteristics. This role is compatible with previous findings and supported by recent studies with naturalistically active humans. Such studies have so far shown that spindle tuning enables the independent preparatory control of reflex muscle stiffness, the selective extraction of information during implicit motor adaptation, and for segmental stretch reflexes to operate in joint space. Incorporation of advanced signal-processing at the periphery may well prove a critical step in the evolution of sensorimotor control theories.

Funder

Vetenskapsrådet

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3