Reflex activation of muscle spindles in human pretibial muscles during standing

Author:

Aniss A. M.1,Diener H. C.1,Hore J.1,Burke D.1,Gandevia S. C.1

Affiliation:

1. Department of Clinical Neurophysiology, Prince Henry Hospital,University of New South Wales, Sydney, Australia.

Abstract

1. Experiments were performed in standing subjects to determine whether low-threshold cutaneous and muscle afferents from mechanoreceptors in the human foot reflexly influence fusimotor neurons innervating pretibial flexor muscles. Recordings were made from 30 identified muscle-spindle afferents, four tendon-organ afferents, and one alpha-motor axon innervating the pretibial flexor muscles. The subjects stood without support or vision on a force platform while trains of electrical stimuli (5 stimuli, 300 Hz) were delivered at nonpainful intensities to the sural nerve or to the posterior tibial nerve at the ankle. 2. Seventeen of the 30 spindle endings had no background discharge, and none was activated by the sural or posterior tibial stimuli. Five silent afferents were given a background discharge by sustained pressure on the relevant tendon, but with two the discharge was dominated by a tremor rhythm obscuring any reflex response to the stimuli. Based on peristimulus time histograms (PSTHs), the sural stimuli then produced increases in discharge of two of the remaining three endings at latencies of 84 and 90 ms. These effects could not be explained by muscle stretch and are presumed to have been fusimotor mediated. 3. When the subjects stood freely without support or vision, 13 muscle-spindle endings had a background discharge, but with three endings tremor developed at the ankle and dominated the spindle discharge. Sural stimuli affected the discharge of five of nine endings unaffected by tremor. With three of these endings, there were changes in discharge that could be explained by muscle stretch.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3