Impaired yolk sac NAD metabolism disrupts murine embryogenesis with relevance to human birth defects

Author:

Bozon Kayleigh1,Cuny Hartmut12,Sheng Delicia Z1,Martin Ella MMA1,Young Paul1,Humphreys David T12ORCID,Dunwoodie Sally L12ORCID

Affiliation:

1. Victor Chang Cardiac Research Institute

2. School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales

Abstract

Severe congenital malformations are a frequent cause of premature death and morbidity in children worldwide. Malformations can originate from numerous genetic or non-genetic factors but in most cases the underlying causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis drives the formation of multiple congenital malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically during a critical period when organs are forming. While NAD de novo synthesis is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and applied gene expression, enzyme activity and metabolic analyses to assess pathway functionality in the embryonic liver and extraembryonic tissues. We found that the extra-embryonic visceral yolk sac endoderm exclusively performs NAD de novo synthesis during early organogenesis before the embryonic liver takes over this function. Furthermore, under CNDD-inducing conditions, mouse visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles which affected embryo metabolism. Expression of requisite genes for NAD de novo synthesis is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryonic development and perturbation of this pathway results in CNDD. Given the functional homology between mouse and human yolk sacs, our data improve the understanding of human congenital malformation causation.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3