Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development

Author:

Churchill Angela J123,Gutiérrez Giselle Dominguez124,Singer Ruth A125,Lorberbaum David S6,Fischer Kevin A6,Sussel Lori12345ORCID

Affiliation:

1. Naomi Berrie Diabetes Institute, Columbia University Medical School, New York, Columbia

2. Department of Genetics and Development, Columbia University Medical School, New York, Columbia

3. Genetics and Development Doctoral Program, Columbia University Medical School, New York, Columbia

4. Nutritional and Metabolic Biology Doctoral Program, Columbia University Medical School, New York, Columbia

5. The Integrated Graduate Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical School, New York, Columbia

6. Barbara Davis Center, University of Colorado, Denver, United States

Abstract

Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

National Institute of General Medical Sciences

Consejo Nacional de Ciencia y Tecnología

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3