Risk of selection and timelines for the continued spread of artemisinin and partner drug resistance in Africa

Author:

Watson Oliver J.,Muchiri Salome,Ward Abby,Meier-Sherling Cecile,Asua Victor,Katairo Thomas,Brewer Tom,Cuomo-Dannenburg Gina,Winskill Peter,Bailey Jeffrey A,Okell Lucy,Scudu Graziella,Woolsey Aaron M.

Abstract

AbstractlongThe introduction of artemisinin combination therapies (ACTs) has significantly reduced the burden ofPlasmodium falciparummalaria, yet the emergence of artemisinin partial resistance (ART-R) as well as partner drug resistance threatens these gains. Recent confirmations of prevalentde novoART-R mutations in Africa, in particular in Rwanda, Uganda and Ethiopia, underscore the urgency of addressing this issue in Africa. Our objective is to characterise this evolving resistance landscape in Africa and understand the speed with which ART-R will continue to spread. We produce estimates of both ART-R and partner drug resistance by bringing together WHO, WWARN and MalariaGen Pf7k data on antimalarial resistance in combination with a literature review. We integrate these estimates within a mathematical modelling approach, aincorporating to estimate parameters known to impact the selection of ART-R for each malaria-endemic country and explore scenarios of ART-R spread and establishment. We identify 16 malaria-endemic countries in Africa to prioritise for surveillance and future deployment of alternative antimalarial strategies, based on ART-R reaching greater than 10% prevalence by 2040 under current malaria burden and effective-treatment coverage. If resistance continues to spread at current rates with no change in drug policy, we predict that partner drug resistance will emerge and the mean percentage of treatment failure across Africa will reach 30.74% by 2060 (parameter uncertainty range: 24.98% - 34.54%). This translates to an alarming number of treatment failures, with 52,980,600 absolute cases of treatment failure predicted in 2060 in Africa (parameter uncertainty range: 26,374,200 - 93,672,400) based on current effective treatment coverage. Our results provide a refined and updated prediction model for the emergence of ART-R to help guide antimalarial policy and prioritise future surveillance efforts and innovation in Africa. These results put into stark context the speed with which antimalarial resistance may spread in Africa if left unchecked, confirming the need for swift and decisive action in formulating antimalarial treatment policies focused on furthering malaria control and containing antimalarial resistance in Africa.shortThe rise of artemisinin partial resistance (ART-R) and increasing partner drug tolerance byPlasmodium falciparummalaria in Africa threatens to undo malaria control efforts. Recent confirmations of de novo ART-R markers in Rwanda, Uganda, and Ethiopia highlight the urgent need to address this threat in Africa, where the vast majority of cases and deaths occur. This study characterises the resistance landscape and predicts the spread of antimalarial resistance across Africa. We estimate and map the current levels of resistance markers related to artesmisinin and its partner drugs using WHO, WWARN, and MalariaGen Pf7k data. We combine these estimates with current malaria transmission and treatment data and use an established individual-based model of malaria resistance to simulate future resistance spread. We identify 16 African countries at highest risk of ART-R for prioritisation of enhanced surveillance and alternative antimalarial strategies. We project that, without policy changes, ART-R will exceed 10% in these regions by 2040. By 2060, if resistance spreads unchecked, we predict mean treatment failure rates will reach 30.74% (parameter uncertainty range: 24.98% - 34.54%) across Africa. This alarming spread of resistance is predicted to cause 52.98 million treatment failures (uncertainty range: 26.37 million - 93.67 million) in 2060. The impact of antimalarial resistance in Africa, if left unchecked, would hugely damage efforts to reduce malaria burden. Our results underscore the critical need for swift policy action to contain resistance and guide future surveillance and intervention efforts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3