Statistical inference on representational geometries

Author:

Schütt Heiko H1ORCID,Kipnis Alexander D1,Diedrichsen Jörn2ORCID,Kriegeskorte Nikolaus1ORCID

Affiliation:

1. Zuckerman Institute, Columbia University

2. Western University

Abstract

Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).

Funder

Deutsche Forschungsgemeinschaft

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference119 articles.

1. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems;Abadi,2015

2. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons;Abbott;Nature Biomedical Engineering,2020

3. Machine learning for neuroimaging with scikit-learn;Abraham;Frontiers in Neuroinformatics,2014

4. Experiments with Kemeny ranking: What works when?;Ali;Mathematical Social Sciences,2012

5. Valid population inference for information-based imaging: From the second-level t-test to prevalence inference;Allefeld;NeuroImage,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3