Toolbox for Gromov-Wasserstein optimal transport: Application to unsupervised alignment in neuroscience

Author:

Sasaki Masaru,Takeda Ken,Abe Kota,Oizumi MasafumiORCID

Abstract

AbstractGromov-Wasserstein optimal transport (GWOT) has emerged as a versatile method for unsupervised alignment in various research areas, including neuroscience, drawing upon the strengths of optimal transport theory. However, the use of GWOT in various applications has been hindered by the difficulty of finding good optima, a significant challenge stemming from GWOT’s nature as a non-convex optimization method. It is often difficult to avoid suboptimal local optima because of the need for systematic hyperparameter tuning. To overcome these obstacles, this paper presents a user-friendly GWOT hyperparameter tuning toolbox (GWTune) specifically designed to streamline the use of GWOT in neuroscience and other fields. The toolbox incorporates Optuna, an advanced hyperparameter tuning tool that uses Bayesian sampling to increase the chances of finding favorable local optima. To demonstrate the utility of our toolbox, we first illustrate the qualitative difference between the conventional supervised alignment method and our unsupervised alignment method using synthetic data. Then, we demonstrate the applicability of our toolbox using some typical examples in neuroscience. Specifically, we applied GWOT to the similarity structures of natural objects or natural scenes obtained from three data domains: behavioral data, neural data, and neural network models. This toolbox is an accessible and robust solution for practical applications in neuroscience and beyond, making the powerful GWOT methodology more accessible to a wider range of users. The open source code for the toolbox is available on GitHub. This work not only facilitates the application of GWOT, but also opens avenues for future improvements and extensions.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Gromov–Wasserstein Distances and the Metric Approach to Object Matching;Found Comut Math,2011

2. Alvarez-Melis D , Jaakkola T. Gromov-Wasserstein Alignment of Word Embedding Spaces. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing; 2018. p. 1881–1890.

3. Alaux J , Grave E , Cuturi M , Joulin A. Unsupervised Hyper-alignment for Multilingual Word Embeddings. In: International Conference on Learning Representations; 2019.Available from: https://openreview.net/forum?id=HJe62s09tX.

4. SCOT: Single-Cell Multi-Omics Alignment with Optimal Transport

5. Thual A , Tran QH , Zemskova T , Courty N , Flamary R , Dehaene S , et al. Aligning individual brains with fused unbalanced Gromov Wasserstein. In: Advances in Neural Information Processing Systems; 2022.Available from: https://openreview.net/forum?id=vy7B8z0-4D.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3