Training deep neural density estimators to identify mechanistic models of neural dynamics

Author:

Gonçalves Pedro J12ORCID,Lueckmann Jan-Matthis12ORCID,Deistler Michael13ORCID,Nonnenmacher Marcel124,Öcal Kaan25ORCID,Bassetto Giacomo12,Chintaluri Chaitanya67ORCID,Podlaski William F6ORCID,Haddad Sara A8ORCID,Vogels Tim P67,Greenberg David S14,Macke Jakob H1239ORCID

Affiliation:

1. Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany

2. Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Bonn, Germany

3. Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany

4. Model-Driven Machine Learning, Institute of Coastal Research, Helmholtz Centre Geesthacht, Geesthacht, Germany

5. Mathematical Institute, University of Bonn, Bonn, Germany

6. Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom

7. Institute of Science and Technology Austria, Klosterneuburg, Austria

8. Max Planck Institute for Brain Research, Frankfurt, Germany

9. Max Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract

Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators—trained using model simulations—to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

H2020 European Research Council

Wellcome Trust Senior Research Fellowship

UK Research and Innovation

Wellcome Trust

Royal Society

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference144 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3