Chromosomal instability can favor macrophage-mediated immune response and induce a broad, vaccination-like anti-tumor IgG response

Author:

Hayes Brandon H.12ORCID,Wang Mai13,Zhu Hui13,Phan Steven H.13,Dooling Lawrence J.13,Andrechak Jason C.12ORCID,Chang Alexander H.13,Tobin Michael P.12ORCID,Ontko Nicholas M.13,Marchena Tristan13,Discher Dennis E.12

Affiliation:

1. Molecular and Cell Biophysics Lab

2. Bioengineering Graduate Group, University of Pennsylvania

3. Physical Sciences Oncology Center at Penn

Abstract

Chromosomal instability (CIN), a state in which cells undergo mitotic aberrations that generate chromosome copy number variations, generates aneuploidy and is thought to drive cancer evolution. Although associated with poor prognosis and reduced immune response, CIN generates aneuploidy-induced stresses that could be exploited for immunotherapies. In such contexts, macrophages and the CD47-SIRPα checkpoint are understudied. Here, CIN is induced pharmacologically induced in poorly immunogenic B16F10 mouse melanoma cells, generating persistent micronuclei and diverse aneuploidy while skewing macrophages towards an anti-cancer M1-like phenotype, based on RNA-sequencing profiling, surface marker expression and short-term antitumor studies. These results further translate to in vivo efficacy: Mice bearing CIN-afflicted tumors with wild-type CD47 levels survive only slightly longer relative to chromosomally stable controls, but long-term survival is maximized when combining macrophage-stimulating anti-tumor IgG opsonization and some form of disruption of the CD47-SIRPα checkpoint. Survivors make multi-epitope, de novo anti-cancer IgG that promote macrophage-mediated phagocytosis of CD47 knockout B16F10 cells and suppress tumoroids in vitro and growth of tumors in vivo . CIN does not greatly affect the level of the IgG response compared to previous studies but does significantly increase survival. These results highlight an unexpected therapeutic benefit from CIN when paired with maximal macrophage anti-cancer activity: an anti-cancer vaccination-like antibody response that can lead to more durable cures and further potentiate cell-mediated acquired immunity.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3