Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs

Author:

Madden Lauran1,Juhas Mark1,Kraus William E2,Truskey George A1,Bursac Nenad1

Affiliation:

1. Department of Biomedical Engineering, Duke University, Durham, United States

2. Department of Medicine, Duke University School of Medicine, Durham, United States

Abstract

Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institutes of Health

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference44 articles.

1. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease;Berchtold;Physiological Reviews,2000

2. Microfluidic organs-on-chips;Bhatia;Nature Biotechnology,2014

3. Isolation and characterization of human muscle cells;Blau;Proceedings of the National Academy of Sciences of USA,1981

4. Human skeletal muscle fibres: molecular and functional diversity;Bottinelli;Progress in Biophysics and Molecular Biology,2000

5. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling;Bowes;Nature Reviews. Drug Discovery,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3