Superspreaders drive the largest outbreaks of hospital onset COVID-19 infections

Author:

Illingworth Christopher JR123ORCID,Hamilton William L45ORCID,Warne Ben45,Routledge Matthew56,Popay Ashley7,Jackson Chris1,Fieldman Tom45,Meredith Luke W8,Houldcroft Charlotte J4ORCID,Hosmillo Myra8ORCID,Jahun Aminu S8ORCID,Caller Laura G8,Caddy Sarah L9ORCID,Yakovleva Anna8,Hall Grant8ORCID,Khokhar Fahad A49,Feltwell Theresa4,Pinckert Malte L8,Georgana Iliana8ORCID,Chaudhry Yasmin8,Curran Martin D6,Parmar Surendra6,Sparkes Dominic56,Rivett Lucy56ORCID,Jones Nick K56ORCID,Sridhar Sushmita4910ORCID,Forrest Sally9,Dymond Tom5,Grainger Kayleigh5,Workman Chris5,Ferris Mark5ORCID,Gkrania-Klotsas Effrossyni51112ORCID,Brown Nicholas M5ORCID,Weekes Michael P49ORCID,Baker Stephen49ORCID,Peacock Sharon J41013ORCID,Goodfellow Ian G8ORCID,Gouliouris Theodore456,de Angelis Daniela213,Török M Estée45ORCID

Affiliation:

1. MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge, United Kingdom

2. Institut für Biologische Physik, Universität zu Köln, Köln, Germany

3. Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge, United States

4. University of Cambridge, Department of Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom

5. Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom

6. Public Health England Clinical Microbiology and Public Health Laboratory, Cambridge Biomedical Campus, Cambridge, United Kingdom

7. Public Health England Field Epidemiology Unit, Cambridge Institute of Public Health, Forvie Site, Cambridge Biomedical Campus, Cambridge, United Kingdom

8. University of Cambridge, Department of Pathology, Division of Virology, Cambridge Biomedical Campus, Cambridge, United Kingdom

9. Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom

10. Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

11. MRC Epidemiology Unit, University of Cambridge, Level 3 Institute of Metabolic Science, Cambridge, United Kingdom

12. University of Cambridge, School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom

13. Public Health England, National Infection Service, London, United Kingdom

Abstract

SARS-CoV-2 is notable both for its rapid spread, and for the heterogeneity of its patterns of transmission, with multiple published incidences of superspreading behaviour. Here, we applied a novel network reconstruction algorithm to infer patterns of viral transmission occurring between patients and health care workers (HCWs) in the largest clusters of COVID-19 infection identified during the first wave of the epidemic at Cambridge University Hospitals NHS Foundation Trust, UK. Based upon dates of individuals reporting symptoms, recorded individual locations, and viral genome sequence data, we show an uneven pattern of transmission between individuals, with patients being much more likely to be infected by other patients than by HCWs. Further, the data were consistent with a pattern of superspreading, whereby 21% of individuals caused 80% of transmission events. Our study provides a detailed retrospective analysis of nosocomial SARS-CoV-2 transmission, and sheds light on the need for intensive and pervasive infection control procedures.

Funder

Wellcome Trust

Academy of Medical Sciences

NIHR

National Institute for Health Research

Medical Research Council

Deutsche Forschungsgemeinschaft

The Health Foundation

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference43 articles.

1. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong;Adam;Nature Medicine,2020

2. Infectious Diseases of Humans: Dynamics and Control

3. ARTIC-nCoV-bioinformaticsSOP-v1.1.0;Artic Network,2021

4. artic-ncov. 2019. Artic-Ncov 2019. Github. https://artic.network/ncov-2019.

5. COVID-19 infectivity profile correction;Ashcroft;Swiss Medical Weekly,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3