Infectious Disease in the Workplace: Quantifying Uncertainty in Transmission

Author:

Hamley Jonathan I. D.,Beldi Guido,Sánchez-Taltavull DanielORCID

Abstract

AbstractUnderstanding disease transmission in the workplace is essential for protecting workers. To model disease outbreaks, the small populations in many workplaces require that stochastic effects are considered, which results in higher uncertainty. The aim of this study was to quantify and interpret the uncertainty inherent in such circumstances. We assessed how uncertainty of an outbreak in workplaces depends on i) the infection dynamics in the community, ii) the workforce size, iii) spatial structure in the workplace, iv) heterogeneity in susceptibility of workers, and v) heterogeneity in infectiousness of workers. To address these questions, we developed a multiscale model: A deterministic model to predict community transmission, and a stochastic model to predict workplace transmission. We extended this basic workplace model to allow for spatial structure, and heterogeneity in susceptibility and infectiousness in workers. We found a non-monotonic relationship between the workplace transmission rate and the coefficient of variation (CV), which we use as a measure of uncertainty. Increasing community transmission, workforce size and heterogeneity in susceptibility decreased the CV. Conversely, increasing the level of spatial structure and heterogeneity in infectiousness increased the CV. However, when the model predicts bimodal distributions, for example when community transmission is low and workplace transmission is high, the CV fails to capture this uncertainty. Overall, our work informs modellers and policy makers on how model complexity impacts outbreak uncertainty. In particular: workforce size, community and workplace transmission, spatial structure and individual heterogeneity contribute in a specific and individual manner to the predicted workplace outbreak size distribution.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Bern Center for Precision Medicine, University of Bern

University of Bern

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,General Agricultural and Biological Sciences,Pharmacology,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Mathematics,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3