Deep Learning-Based Road Extraction From Historical Maps
Author:
Affiliation:
1. History Department, Koç University, Istanbul, Turkey
2. Department of Geomatics Engineering, Istanbul Technical University, Maslak, Sariyer, Turkey
Funder
H2020 European Research Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Geotechnical Engineering and Engineering Geology
Link
http://xplorestaging.ieee.org/ielx7/8859/9651998/09882054.pdf?arnumber=9882054
Reference19 articles.
1. Learning to Detect Roads in High-Resolution Aerial Images
2. Historical Map Applications and Processing Technologies
3. Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks
4. Automatic extraction of road intersection points from USGS historical map series using deep convolutional neural networks
5. Feature pyramid networks for object detection;lin;Proc IEEE Conf Comput Vision Pattern Recognit (CVPR),2022
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AU3-GAN: A Method for Extracting Roads from Historical Maps Based on an Attention Generative Adversarial Network;Journal of Geovisualization and Spatial Analysis;2024-07-16
2. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering;Neural Computing and Applications;2024-05-13
3. A novel framework for road vectorization and classification from historical maps based on deep learning and symbol painting;Computers, Environment and Urban Systems;2024-03
4. A critical analysis of road network extraction using remote sensing images with deep learning;Spatial Information Research;2024-02-27
5. Utilization of Improved Annotations From Object-Based Image Analysis as Training Data for DeepLab V3+ Model: A Focus on Road Extraction in Very High-Resolution Orthophotos;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3