An Efficient Network Intrusion Detection System for Distributed Networks using Machine Learning Technique
Author:
Affiliation:
1. Sathyabama Institute of Science & Technology,Department of Computer Science & Engineering,Chennai,Tamil Nadu,India
2. Sree Sakthi Engineering College,Department of Computer Science & Engineering,Coimbatore,Tamil Nadu,India
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10125569/10125286/10126055.pdf?arnumber=10126055
Reference15 articles.
1. Dynamic detection of malicious intrusion in wireless network based on improved random forest algorithm
2. Optimizing a New Intrusion Detection System Using Ensemble Methods and Deep Neural Network
3. Detection of Distributed Denial of Service Attack using Random Forest Algorithm
4. Random Forest Classifier Evaluation in DDoS Detection System for Cyber Defence Preparation
5. Smart Anomaly Detection: Deep Learning modeling Approach and System Utilization Analysis
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Chaotic Technique for High Information Security based on Dual-Hiding Asynchronous-Logic AES Accelerator with High Resistance to Prevent Side-Channel Attacks;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12
2. A Novel Approach to Cloud Load Balancing Using Advanced Migration Operator;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12
3. Raspberry Pi-Enhanced Intrusion Detection System with Messenger API Integration;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11
4. Intrusive Detection in Nuclear Systems using Supervised and Unsupervised M1 Methodologies;2023 IEEE Fifth International Conference on Advances in Electronics, Computers and Communications (ICAECC);2023-09-07
5. Supervised and Unsupervised ML Methodologies for Intrusive Detection in Nuclear Systems;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3