Multiscale Deep Feature Learning for Human Activity Recognition Using Wearable Sensors
Author:
Affiliation:
1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
2. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/41/9913345/09744439.pdf?arnumber=9744439
Reference34 articles.
1. Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
2. Applying singular value decomposition on accelerometer data for 1D convolutional neural network based fall detection
3. Asymmetric Residual Neural Network for Accurate Human Activity Recognition
4. Deep activity recognition models with triaxial accelerometers;alsheikh;Proc Workshops 30th AAAI Conf Artif Intell,0
5. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition
Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards Noninvasive Glucose Monitoring Based on Bioimpedance Grid Sampling Topology;IEEE Transactions on Industrial Electronics;2024-11
2. Human activity recognition and fall detection using convolutional neural network and transformer-based architecture;Biomedical Signal Processing and Control;2024-09
3. AS-APF: Encoding time series as images for human activity recognition with SK-based convolutional networks;Transactions of the Institute of Measurement and Control;2024-08-24
4. Feature Fusion and Augmentation Based on Manifold Ranking for Image Classification;International Journal of Semantic Computing;2024-08-16
5. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals;PLOS ONE;2024-08-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3