Feature Fusion and Augmentation Based on Manifold Ranking for Image Classification

Author:

Pereira-Ferrero Vanessa Helena1ORCID,Valem Lucas Pascotti1ORCID,Leticio Gustavo Rosseto1ORCID,Pedronette Daniel Carlos Guimarães1ORCID

Affiliation:

1. Department of Statistics, Applied Mathematics and Computing (DEMAC), São Paulo State University (UNESP), Rio Claro, 13506-900, São Paulo, Brazil

Abstract

Despite the great advances in the field of image classification, the association of ideal approaches that can bring improved results, considering different datasets, is still an open challenge. In this work, a novel approach is presented, based on a combination of compared strategies: feature extraction for early fusion; rankings based on manifold learning for late fusion; and feature augmentation applied in a long short-term memory (LSTM) algorithm. The proposed method aims to investigate the effect of feature fusion (early fusion) and ranking fusion (late fusion) in the final results of image classification. The experimental results showed that the proposed strategies improved the accuracy of results in different tested datasets (such as CIFAR10, Stanford Dogs, Linnaeus 5, Flowers 102, and Flowers 17) using a fusion of features from three convolutional neural networks (CNNs) (ResNet152, VGG16, and DPN92) and its respective generated rankings. The results indicated significant improvements and showed the potential of the approach proposed for image classification.

Funder

São Paulo Research Foundation - FAPESP

Brazilian National Council for Scientific and Technological Development - CNPq

Microsoft Research, and Petrobras

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3