A Simplified Current Feature Extraction and Deployment Method for DC Series Arc Fault Detection
Author:
Affiliation:
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/41/10184152/10054597.pdf?arnumber=10054597
Reference25 articles.
1. Research on diagnosis method of series arc fault of three-phase load based on SSA-ELM
2. The Detection of Series Arc Fault in Photovoltaic Systems Based on the Arc Current Entropy
3. Series Arc Fault Detection Based on Random Forest and Deep Neural Network
4. An Integrated DC Series Arc Fault Detection Method for Different Operating Conditions
5. Diagnosis of Series DC Arc Faults—A Machine Learning Approach
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development of an in-situ current-carrying friction testing instrument and experimental analysis under the background of the Fourth Industrial Revolution;Mechanical Systems and Signal Processing;2025-01
2. DC Series Arc Fault Detection Method With Resonant Filter Design for PV Systems;IEEE Transactions on Power Electronics;2024-11
3. The LPST-Net: A new deep interval health monitoring and prediction framework for bearing-rotor systems under complex operating conditions;Advanced Engineering Informatics;2024-10
4. DC Arc Failure Detection based on Division of Time and Frequency Components using Intelligence Models;Journal of Electrical Engineering & Technology;2024-08-05
5. Enhancing Odor Classification of Essential Oils with Electronic Nose Data;2024 9th International Conference on Computer and Communication Systems (ICCCS);2024-04-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3