A Novel Data Generation and Quantitative Characterization Method of Motor Static Eccentricity With Adversarial Network
Author:
Affiliation:
1. School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
Funder
Delta Power Electronics Science and Education Development Program of Delta Group
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/63/10130046/10103658.pdf?arnumber=10103658
Reference14 articles.
1. Fault Feature Recovery With Wasserstein Generative Adversarial Imputation Network With Gradient Penalty for Rotating Machine Health Monitoring Under Signal Loss Condition
2. Health Indicator Construction Method of Bearings Based on Wasserstein Dual-Domain Adversarial Networks Under Normal Data Only
3. Towards Advanced Diagnosis Recognition for Eccentricities Faults: Application on Induction Motor
4. Accurate Prediction of Magnetic Field and Magnetic Forces in Permanent Magnet Motors Using an Analytical Solution
5. Investigation of Effects of Asymmetries on the Performance of Permanent Magnet Synchronous Machines
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data augmentation using conditional generative adversarial network (cGAN): applications for sewer condition classification and testing using different machine learning techniques;Journal of Hydroinformatics;2024-06-13
2. A new exponential-logarithm-based single-valued neutrosophic set and their applications;Expert Systems with Applications;2024-03
3. A novel generative adversarial network‐based super‐resolution approach for face recognition;Expert Systems;2024-02-21
4. Optimizing brushless direct current motor design: An application of the multi-objective generalized normal distribution optimization;Heliyon;2024-02
5. Analysis of Cogging Torque of Permanent Magnet Motors Under Mixed-Eccentricity and Manufacturing Tolerances;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3