Health Indicator Construction Method of Bearings Based on Wasserstein Dual-Domain Adversarial Networks Under Normal Data Only
Author:
Affiliation:
1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
2. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Peking, China
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/41/9768205/09732262.pdf?arnumber=9732262
Reference37 articles.
1. Construction of Health Indicators for Rotating Machinery Using Deep Transfer Learning With Multiscale Feature Representation
2. Health indicator construction of machinery based on end-to-end trainable convolution recurrent neural networks
3. Statistical Modeling of Bearing Degradation Signals
4. Machinery health prognostics: A systematic review from data acquisition to RUL prediction;lei;Mech Syst Signal Process,2018
5. Anomaly Detection and Fault Prognosis for Bearings
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A lognormal-normal mixture model for unsupervised health indicator construction and its application into gear remaining useful life prediction;Mechanical Systems and Signal Processing;2024-11
2. Information-guided signal multi-granularity contrastive feature learning for fault diagnosis with few labeled data;Advanced Engineering Informatics;2024-08
3. A health indicator enabling both first predicting time detection and remaining useful life prediction: Application to rotating machinery;Measurement;2024-08
4. Unsupervised construction of health indicator for rotating machinery via multi-criterion feature selection and attentive variational autoencoder;Science China Technological Sciences;2024-04-25
5. Statistically Interpretable Health Indicator Based on Dynamic Interactions Decoupling for Gear Wear Assessment;IEEE Transactions on Instrumentation and Measurement;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3