A Framework of Travel Mode Identification Fusing Deep Learning and Map-Matching Algorithm
Author:
Affiliation:
1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing, China
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/10139322/10061352.pdf?arnumber=10061352
Reference51 articles.
1. Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies
2. On data processing required to derive mobility patterns from passively-generated mobile phone data
3. Exploring a new model for mobile positioning based on CDR data of the cellular networks;hadachi;arXiv 1902 09399,2019
4. Estimating crowd flow and crowd density from cellular data for mass rapid transit;li;Proc 6th Int Workshop Urban Comput,2017
5. Discovering urban activity patterns in cell phone data
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Travel Mode Identification for Non-Uniform Passive Mobile Phone Data;IEEE Transactions on Intelligent Transportation Systems;2024-09
2. A multi-scale attributes fusion model for travel mode identification using GPS trajectories;Geo-spatial Information Science;2024-08-08
3. From cell tower location to user location: Understanding the spatial uncertainty of mobile phone network data in human mobility research;Computers, Environment and Urban Systems;2024-07
4. A hybrid method for intercity transport mode identification based on mobility features and sequential relations mined from cellular signaling data;Computer-Aided Civil and Infrastructure Engineering;2024-05-13
5. Characterising travel behaviour patterns of transport hub station area users using mobile phone data;Journal of Transport Geography;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3