Affiliation:
1. School of Transportation Southeast University Nanjing China
2. Key Laboratory of Internet of Vehicle Technical Innovation and Testing Ministry of Industry and Information Technology Beijing China
3. China Railway Group Limited Beijing China
4. College of International Education Jinling Institute of Technology Nanjing China
Abstract
AbstractThe proliferation of mobile phones has generated vast quantities of cellular signaling data (CSD), covering extensive spatial areas and populations. These data, containing spatiotemporal information, can be employed to identify and analyze intercity transport modes, providing valuable insights for understanding travel distribution and behavior. However, CSD are primarily intended for communication purposes and are not directly suitable for transportation research due to issues such as low spatial precision, sparse sampling granularity, and lacking traffic semantic features. This article proposes a Hybrid model for identifying individual intercity transport modes based on CSD. Several multidimensional mobility features are proposed that extract interpretable motion characteristics from CSD. A preliminary transport mode probability judgment is made based on the mobility features. Then, the complete transport mode is confirmed considering the temporal continuity correlation of the entire trace. Experiments confirm the Hybrid model's superior precision in identifying transport modes over baseline models, with an average F1 score of 0.92, maintaining high accuracy across various trajectory lengths. This model would support further studying individual intercity travel behavior patterns, aiding transportation planning and operational management decisions using CSD.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献