Quantifying Demonstration Quality for Robot Learning and Generalization
Author:
Affiliation:
1. Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
2. Faculty of Engineering, Monash University, Clayton, VIC, Australia
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Control and Optimization,Computer Science Applications,Computer Vision and Pattern Recognition,Mechanical Engineering,Human-Computer Interaction,Biomedical Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/7083369/9831196/09832744.pdf?arnumber=9832744
Reference30 articles.
1. What Makes a Good Demonstration for Robot Learning Generalization?
2. Quantifying teaching behavior in robot learning from demonstration
3. Metrics for assessing human skill when demonstrating a bimanual task to a robot;ureche;Proc 10th Annu ACM/IEEE Int Conf Hum -Robot Interact Extended Abstr,0
4. Understandable robots - What, Why, and How
5. Obtaining good performance from a bad teacher;kaiser;Program Demonstration Learn Examples Workshop ML,0
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. How Non-experts Kinesthetically Teach a Robot over Multiple Sessions: Diversity in Teaching Styles and Effects on Performance;International Journal of Social Robotics;2024-08-23
2. Retry-behavior Emergence for Robot-Motion Learning Without Teaching and Subtask Design;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15
3. NetLfD: Network-Aware Learning From Demonstration for In-Contact Skills via Teleoperation;IEEE Robotics and Automation Letters;2023-11
4. A Framework for Improving Information Content of Human Demonstrations for Enabling Robots to Acquire Complex Tool Manipulation Skills;2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN);2023-08-28
5. EValueAction: a proposal for policy evaluation in simulation to support interactive imitation learning;2023 IEEE 21st International Conference on Industrial Informatics (INDIN);2023-07-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3