Multi-Agent Reinforcement Learning for Real-Time Dynamic Production Scheduling in a Robot Assembly Cell
Author:
Affiliation:
1. Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland, New Zealand
2. School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Control and Optimization,Computer Science Applications,Computer Vision and Pattern Recognition,Mechanical Engineering,Human-Computer Interaction,Biomedical Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/7083369/9750005/09801608.pdf?arnumber=9801608
Reference24 articles.
1. Learning Scheduling Policies for Multi-Robot Coordination With Graph Attention Networks
2. Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints
3. A comprehensive survey of multiagent reinforcement learning;bu?oniu;IEEE Trans Syst Man Cybern Part C Appl Rev,2008
4. Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning
5. Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q Network
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Smart scheduling for next generation manufacturing systems: a systematic literature review;Journal of Intelligent Manufacturing;2024-09-09
2. Multi-objective evolutionary algorithm based flexible assembly job-shop rescheduling with component sharing for order insertion;Computers & Operations Research;2024-09
3. Deep reinforcement learning-based preventive maintenance for repairable machines with deterioration in a flow line system;Annals of Operations Research;2024-08-06
4. A Double Deep Q-Network framework for a flexible job shop scheduling problem with dynamic job arrivals and urgent job insertions;Engineering Applications of Artificial Intelligence;2024-07
5. Deep reinforcement learning for adaptive flexible job shop scheduling: coping with variability and uncertainty;Smart Science;2024-04-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3