Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data
Author:
Affiliation:
1. School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
2. Chinese Academy of Sciences, Institute of High Energy Physics, Beijing, China
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Intelligent Manufacturing prognostics and health management (PHM) Innovation Team Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/9717300/09794441.pdf?arnumber=9794441
Reference50 articles.
1. Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning
2. Learning to compare: Relation network for few-shot learning;sung;arXiv 1711 06025,2017
3. A new graph-based semi-supervised method for surface defect classification
4. Interaction-Aware Graph Neural Networks for Fault Diagnosis of Complex Industrial Processes
5. Graph Cardinality Preserved Attention Network for Fault Diagnosis of Induction Motor under Varying Speed and Load Condition
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cross-domain few-shot fault diagnosis based on meta-learning and domain adversarial graph convolutional network;Engineering Applications of Artificial Intelligence;2024-10
2. Fault detection using Graph Neural Differential Auto-encoders (GNDAE);Computers & Chemical Engineering;2024-10
3. Improved GNN based on Graph-Transformer: A new framework for rolling mill bearing fault diagnosis;Transactions of the Institute of Measurement and Control;2024-07-27
4. Meta learning based residual network for industrial production quality prediction with limited data;Scientific Reports;2024-05-25
5. Federated temporal-context contrastive learning for fault diagnosis using multiple datasets with insufficient labels;Advanced Engineering Informatics;2024-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3