Haptic Display of Constrained Dynamic Systems via Admittance Displays

Author:

Faulring Eric L.,Lynch Kevin M.,Colgate J. Edward,Peshkin Michael A.

Abstract

In the Cobotic Hand Controller, we have introduced an admittance display that can render very high impedances (up to its own structural stiffness). This is due to its use of infinitely variable transmissions. While admittance displays typically excel at rendering high impedances, the incorporation of infinitely variable transmissions in the Cobotic Hand Controller allows the stable display of a wide dynamic range, including low impedances. The existence of a display that excels at rendering high-impedance constraints, but has high-fidelity control of low impedances tangent to those constraints, has led us to describe an admittance control architecture not often examined in the haptics community. In this paper, we develop a comprehensive approach that enables rendering of rigid motion constraints while simultaneously preserving the physical integrity of the intended inertial dynamics tangent to those constraints. This is in contrast to conventional impedance-control algorithms that focus primarily on rendering reaction forces along contact normals with constraints. We present this algorithm here, which is general to all admittance displays, and report on its implementation with the Cobotic Hand Controller. We offer examples of rigid bodies and linkages subject to holonomic and/or nonholonomic constraints

Funder

U.S. Department of Energy

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3