Multi-Task Reinforcement Learning With Attention-Based Mixture of Experts
Author:
Affiliation:
1. School of Automation, Southeast University, Nanjing, China
2. School of Cyber Science and Engineering, Southeast University, Nanjing, China
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Zhishan” Scholars Programs of Southeast University
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Control and Optimization,Computer Science Applications,Computer Vision and Pattern Recognition,Mechanical Engineering,Human-Computer Interaction,Biomedical Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/7083369/10102643/10111062.pdf?arnumber=10111062
Reference32 articles.
1. Efficient Multi-Task Learning via Iterated Single-Task Transfer
2. Distral: Robust multitask reinforcement learning;teh;Proc 31st Int Conf Neural Inf Process Syst,0
3. Pseudo-task augmentation: From deep multitask learning to intratask sharing—and back;meyerson;Proc Int Conf Mach Learn,0
4. Evolutionary architecture search for deep multitask networks
5. RoBERTa: A robustly optimized bert pretraining approach;liu,2019
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust circuit optimization under PVT variations via weight optimization problem reformulation;Expert Systems with Applications;2024-08
2. Reinforcement Learning With Adaptive Policy Gradient Transfer Across Heterogeneous Problems;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-06
3. Projected Task-Specific Layers for Multi-Task Reinforcement Learning;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13
4. Active reinforcement learning versus action bias and hysteresis: control with a mixture of experts and nonexperts;PLOS Computational Biology;2024-03-29
5. A lightweight multi-task learning network based on key area guidance for counterfeit detection;Signal, Image and Video Processing;2024-03-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3