Context-aware IoT Service Recommendation: A Deep Collaborative Filtering-based Approach

Author:

Wang Zhen1,Sun Chang-Ai1,Aiello Marco2

Affiliation:

1. University of Science and Technology Beijing,School of Computer and Communication Engineering,Beijing,China

2. IAAS University of Stuttgart,Department of Service Computing,Stuttgart,Germany

Funder

National Natural Science Foundation of China

Publisher

IEEE

Reference35 articles.

1. A generic context-aware service discovery architecture for IoT services;sasirekha;Proceedings of the 2017 International Conference on Intelligent Information Technologie,2017

2. Empirical analysis of predictive algorithms for collaborative filtering;breese;Proceedings of Conferences on Uncertainty in Artificial Intelligence,1998

3. Advances in pre-training distributed word representations;mikolov;Proceedings of the 2018 International Conference on Language Resources and Evaluatio,2018

4. Context-Aware Recommendations Based on Deep Learning Frameworks

5. Probabilistic matrix factorization;mnih;Advances in neural information processing systems,2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic provisioning of devices in microservices-based IoT applications using context-aware reinforcement learning;Innovations in Systems and Software Engineering;2024-08-25

2. Popularity Bias in Correlation Graph based API Recommendation for Mashup Creation;ACM Transactions on Intelligent Systems and Technology;2024-04-02

3. A systematic review on recommendation-based link selection strategy in the social internet of things network;2023 7th International Conference on Internet of Things and Applications (IoT);2023-10-25

4. Service Recommendation Model Based on Trust and QoS for Social Internet of Things;IEEE Transactions on Services Computing;2023-09

5. Representation Enhancement based Cold Start Model for Elastic Compute Service Recommendation;2023 IEEE International Conference on Web Services (ICWS);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3