Context-Aware Recommendations Based on Deep Learning Frameworks

Author:

Unger Moshe1ORCID,Tuzhilin Alexander1,Livne Amit2

Affiliation:

1. New York University, New York, NY

2. Ben-Gurion University of the Negev

Abstract

In this article, we suggest a novel deep learning recommendation framework that incorporates contextual information into neural collaborative filtering recommendation approaches. Since context is often represented by dynamic and high-dimensional feature space in multiple applications and services, we suggest to model contextual information in various ways for multiple purposes, such as rating prediction, generating top-k recommendations, and classification of users’ feedback. Specifically, based on the suggested framework, we propose three deep context-aware recommendation models based on explicit, unstructured, and structured latent representations of contextual data derived from various contextual dimensions (e.g., time, location, user activity). Offline evaluation on three context-aware datasets confirms that our proposed deep context-aware models surpass state-of-the-art context-aware methods. We also show that utilizing structured latent contexts in the proposed deep recommendation framework achieves significantly better performance than the other context-aware models on all datasets.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3