Affiliation:
1. New York University, New York, NY
2. Ben-Gurion University of the Negev
Abstract
In this article, we suggest a novel deep learning recommendation framework that incorporates contextual information into neural collaborative filtering recommendation approaches. Since context is often represented by dynamic and high-dimensional feature space in multiple applications and services, we suggest to model contextual information in various ways for multiple purposes, such as rating prediction, generating top-k recommendations, and classification of users’ feedback. Specifically, based on the suggested framework, we propose three deep context-aware recommendation models based on explicit, unstructured, and structured latent representations of contextual data derived from various contextual dimensions (e.g., time, location, user activity). Offline evaluation on three context-aware datasets confirms that our proposed deep context-aware models surpass state-of-the-art context-aware methods. We also show that utilizing structured latent contexts in the proposed deep recommendation framework achieves significantly better performance than the other context-aware models on all datasets.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Management Information Systems
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献