Dual Learning-Based Graph Neural Network for Remote Sensing Image Super-Resolution
Author:
Affiliation:
1. School of Computer Science and the Hubei Key Laboratory of Intelligent Geo Information Processing, China University of Geosciences, Wuhan, China
2. Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
Funder
National Natural Science Foundation of China
Hong Kong Scholars Program
Hubei Key Laboratory of Regional Development and Environmental Response
Hubei Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09861602.pdf?arnumber=9861602
Reference63 articles.
1. Enhanced Non-Local Total Variation Model and Multi-Directional Feature Prediction Prior for Single Image Super Resolution
2. Non-Local Kernel Regression for Image and Video Restoration
3. Assessing the Effects of Induced Field Rotation on Water Ice Detection of Tianwen-1 Full-Polarimetric Mars Rover Penetrating Radar
4. Edge-Enhanced GAN for Remote Sensing Image Superresolution
5. Remote Sensing Image Super-Resolution via Mixed High-Order Attention Network
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi kernel cross sparse graph attention convolutional neural network for brain magnetic resonance imaging super-resolution;Biomedical Signal Processing and Control;2024-10
2. Frequency distribution-aware network based on discrete cosine transformation (DCT) for remote sensing image super resolution;PeerJ Computer Science;2024-09-04
3. A Novel Approach using Degradation Representation for Remote Sensing Image Super-resolution in Real-world Scenarios;2024 IEEE Space, Aerospace and Defence Conference (SPACE);2024-07-22
4. Super-Resolution Image Reconstruction Method between Sentinel-2 and Gaofen-2 Based on Cascaded Generative Adversarial Networks;Applied Sciences;2024-06-08
5. A Systematic Survey of Deep Learning-Based Single-Image Super-Resolution;ACM Computing Surveys;2024-05-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3