Super-Resolution Image Reconstruction Method between Sentinel-2 and Gaofen-2 Based on Cascaded Generative Adversarial Networks

Author:

Wang Xinyu12ORCID,Ao Zurui3,Li Runhao24,Fu Yingchun2,Xue Yufei2,Ge Yunxin3

Affiliation:

1. Guangdong Center for Marine Development Research, Guangzhou 510220, China

2. School of Geography, South China Normal University, Guangzhou 510631, China

3. Beidou Research Institute, South China Normal University, Guangzhou 528225, China

4. China Water Resources Pearl River Planning, Surveying and Designing Co., Ltd., Guangzhou 510610, China

Abstract

Due to the multi-scale and spectral features of remote sensing images compared to natural images, there are significant challenges in super-resolution reconstruction (SR) tasks. Networks trained on simulated data often exhibit poor reconstruction performance on real low-resolution (LR) images. Additionally, compared to natural images, remote sensing imagery involves fewer high-frequency components in network construction. To address the above issues, we introduce a new high–low-resolution dataset GF_Sen based on GaoFen-2 and Sentinel-2 images and propose a cascaded network CSWGAN combined with spatial–frequency features. Firstly, based on the proposed self-attention GAN (SGAN) and wavelet-based GAN (WGAN) in this study, the CSWGAN combines the strengths of both networks. It not only models long-range dependencies and better utilizes global feature information, but also extracts frequency content differences between different images, enhancing the learning of high-frequency information. Experiments have shown that the networks trained based on the GF_Sen can achieve better performance than those trained on simulated data. The reconstructed images from the CSWGAN demonstrate improvements in the PSNR and SSIM by 4.375 and 4.877, respectively, compared to the relatively optimal performance of the ESRGAN. The CSWGAN can reflect the reconstruction advantages of a high-frequency scene and provides a working foundation for fine-scale applications in remote sensing.

Funder

National Natural Science Foundation of China

Ministry of education of Humanities and Social Science project

Tibet Autonomous Region Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3