Cross-Domain Self-Taught Network for Few-Shot Hyperspectral Image Classification
Author:
Affiliation:
1. School of Electronic Engineering and the Key Laboratory of Collaborative Intelligent Systems of Ministry of Education, Xidian University, Xi’an, China
2. School of Computer Science and Technology, Xidian University, Xi’an, China
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/10006360/10100936.pdf?arnumber=10100936
Reference81 articles.
1. A New Convolutional Kernel Classifier for Hyperspectral Image Classification
2. Attention Multisource Fusion-Based Deep Few-Shot Learning for Hyperspectral Image Classification
3. Deep Recurrent Neural Networks for Hyperspectral Image Classification
4. Deep Quadruplet Network for Hyperspectral Image Classification with a Small Number of Samples
5. Deep Convolutional Neural Networks for Hyperspectral Image Classification
Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Focal Transfer Graph Network and Its Application in Cross-Scene Hyperspectral Image Classification;IEEE Transactions on Artificial Intelligence;2024-08
2. Cross-Domain Few-Shot Learning With Spectral-Spatial Split-Attention For Hyperspectral Image Classification;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07
3. Unsupervised Domain Adaptation for Cross-Scene Hyperspectral Image Classification Based on Decoupled Contrastive Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30
4. Spatial-Spectral–Semantic Cross-Domain Few-Shot Learning for Hyperspectral Image Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
5. Few-Shot Learning With Prototype Rectification for Cross-Domain Hyperspectral Image Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3