Deep Quadruplet Network for Hyperspectral Image Classification with a Small Number of Samples

Author:

Zhang ChengyeORCID,Yue JunORCID,Qin Qiming

Abstract

This study proposes a deep quadruplet network (DQN) for hyperspectral image classification given the limitation of having a small number of samples. A quadruplet network is designed, which makes use of a new quadruplet loss function in order to learn a feature space where the distances between samples from the same class are shortened, while those from a different class are enlarged. A deep 3-D convolutional neural network (CNN) with characteristics of both dense convolution and dilated convolution is then employed and embedded in the quadruplet network to extract spatial-spectral features. Finally, the nearest neighbor (NN) classifier is used to accomplish the classification in the learned feature space. The results show that the proposed network can learn a feature space and is able to undertake hyperspectral image classification using only a limited number of samples. The main highlights of the study include: (1) The proposed approach was found to have high overall accuracy and can be classified as state-of-the-art; (2) Results of the ablation study suggest that all the modules of the proposed approach are effective in improving accuracy and that the proposed quadruplet loss contributes the most; (3) Time-analysis shows the proposed methodology has a similar level of time consumption as compared with existing methods.

Funder

National Natural Science Foundation of China

National key research and development program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-shot remote sensing image scene classification: Recent advances, new baselines, and future trends;ISPRS Journal of Photogrammetry and Remote Sensing;2024-03

2. Attention-Guided Residual Network for Skin Lesion Classification Using Deep Reinforcement Learning;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

3. MADENLERİN SINIFLANDIRILMASINA YÖNELİK HİBRİD BİR CNN MODELİN OLUŞTURULMASI;Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi;2023-09-03

4. Advances in Hyperspectral Image Classification Methods with Small Samples: A Review;Remote Sensing;2023-07-30

5. A survey on machine learning from few samples;Pattern Recognition;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3