Incremental Dictionary Learning-Driven Tensor Low-Rank and Sparse Representation for Hyperspectral Image Classification
Author:
Affiliation:
1. School of Earth Sciences and Engineering, Hohai University, Nanjing, China
2. Image and Signal Processing (ISP) Group, University of València, València, Spain
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
General Earth and Planetary Sciences,Electrical and Electronic Engineering
Link
http://xplorestaging.ieee.org/ielx7/36/9633014/09956814.pdf?arnumber=9956814
Reference67 articles.
1. A Sparse and Low-Rank Near-Isometric Linear Embedding Method for Feature Extraction in Hyperspectral Imagery Classification
2. Discriminant Analysis of Hyperspectral Imagery Using Fast Kernel Sparse and Low-Rank Graph
3. Low-Rank and Sparse Representation for Hyperspectral Image Processing: A Review
4. Learning Dual Geometric Low-Rank Structure for Semisupervised Hyperspectral Image Classification
5. Self-Supervised Low-Rank Representation (SSLRR) for Hyperspectral Image Classification
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Level Feature Extraction Networks for Hyperspectral Image Classification;Remote Sensing;2024-02-04
2. Compressed Spectrum Reconstruction Method Based on Coding Feature Vector Enhancement;IEEE Transactions on Geoscience and Remote Sensing;2024
3. Structure-Prior-Constrained Low-Rank and Sparse Representation With Discriminative Incremental Dictionary for Hyperspectral Image Classification;IEEE Transactions on Geoscience and Remote Sensing;2024
4. A Deep Sparse Representation with Random Dictionary for Hyperspectral Image Classification;International Journal of Wavelets, Multiresolution and Information Processing;2023-03-06
5. Hyperspectral Image Classification Using Geometric Spatial–Spectral Feature Integration: A Class Incremental Learning Approach;IEEE Transactions on Geoscience and Remote Sensing;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3