Practical Private Aggregation in Federated Learning Against Inference Attack
Author:
Affiliation:
1. College of Information Science and Technology, Donghua University, Shanghai, China
2. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
Funder
Open Foundation of State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Signal Processing
Link
http://xplorestaging.ieee.org/ielx7/6488907/9997152/09866515.pdf?arnumber=9866515
Reference44 articles.
1. Efficient differentially private secure aggregation for federated learning via hardness of learning with errors;stevens;arXiv 2112 06872,2021
2. Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption;hardy;arXiv 1711 10677,2017
3. Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning
4. A Utility-Aware General Framework With Quantifiable Privacy Preservation for Destination Prediction in LBSs
5. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Client-Side Gradient Inversion Attack in Federated Learning Using Secure Aggregation;IEEE Internet of Things Journal;2024-09-01
2. GSASG: Global Sparsification With Adaptive Aggregated Stochastic Gradients for Communication-Efficient Federated Learning;IEEE Internet of Things Journal;2024-09-01
3. Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach;Information;2024-06-28
4. More Efficient and Verifiable Privacy-Preserving Aggregation Scheme for Internet of Things-Based Federated Learning;Applied Sciences;2024-06-21
5. SVCA: Secure and Verifiable Chained Aggregation for Privacy-Preserving Federated Learning;IEEE Internet of Things Journal;2024-05-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3