Privacy Preserving Machine Learning with Homomorphic Encryption and Federated Learning

Author:

Fang Haokun,Qian Quan

Abstract

Privacy protection has been an important concern with the great success of machine learning. In this paper, it proposes a multi-party privacy preserving machine learning framework, named PFMLP, based on partially homomorphic encryption and federated learning. The core idea is all learning parties just transmitting the encrypted gradients by homomorphic encryption. From experiments, the model trained by PFMLP has almost the same accuracy, and the deviation is less than 1%. Considering the computational overhead of homomorphic encryption, we use an improved Paillier algorithm which can speed up the training by 25–28%. Moreover, comparisons on encryption key length, the learning network structure, number of learning clients, etc. are also discussed in detail in the paper.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference51 articles.

1. Privacy-preserving ridge regression with only linearly-homomorphic encryption;Giacomelli,2018

2. Secure multiple linear regression based on homomorphic encryption;Hall;J. Off. Stat.,2011

3. Federated learning: Strategies for improving communication efficiency;Konečný;arXiv,2016

4. Federated Machine Learning

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3