Deep Prototypical-Parts Ease Morphological Kidney Stone Identification and are Competitively Robust to Photometric Perturbations
Author:
Affiliation:
1. School of Engineering and Sciences,Tecnologico de Monterrey,Mexico
2. Service D’Urologie de Brabois,CHU Nancy,Nancy,France
3. Université de Lorraine and CNRS,CRAN UMR 7039,Nancy,France
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10208270/10208119/10208481.pdf?arnumber=10208481
Reference28 articles.
1. Assessing deep learning methods for the identification of kidney stones in endoscopic images
2. Diet: from food to stone
3. Towards an automated classification method for ureteroscopic kidney stone images using ensemble learning
4. Boosting kidney stone identification in endoscopic images using two-step transfer learning;lopez-tiro,2022
5. Interpretable deep learning classifier by detection of prototypical parts on kidney stones images;flores-araiza,2022
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the Link Between Model Performance and Causal Scoring of Medical Image Explanations;2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS);2024-06-26
2. On the In Vivo Recognition of Kidney Stones Using Machine Learning;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3