Deep Learning Modelling for Composite Properties of PCB Conductive Layers
Author:
Affiliation:
1. University of Greenwich,Computational Mechanics and Reliability Group, School of Computing and Mathematical Sciences,London,United Kingdom,SE10 9LS
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9758836/9758837/09758885.pdf?arnumber=9758885
Reference14 articles.
1. Neural Network for Mechanical Property Estimation of Multi-layered Laminate Composite;barbosa;Materials Today Proceedings,0
2. Predicting Materials Properties with Little Data Using Shotgun Transfer Learning
3. Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning
4. Prediction and optimization of mechanical properties of composites using convolutional neural networks
5. Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized hybrid finite element analyses - Artificial neural networks technique for estimating in-plane orthotropic mechanical properties of printed circuit boards;Results in Engineering;2024-09
2. Utilizing CNN to predict homogeneous thermo-mechanical properties of conductive layers for reliability numerical analysis in electronics;Microelectronics Reliability;2024-06
3. Prediction of thermo-mechanical properties of PCB conductive layers using convolutional neural networks;2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2023-04-17
4. Board Level Reliability Study on Large Antenna-in-Package Solutions for Automotive Radar Applications;2022 IEEE 24th Electronics Packaging Technology Conference (EPTC);2022-12-07
5. Printed Circuit Board Assembly Modeling for Predictive Reliability Assessment;2022 IEEE 28th International Symposium for Design and Technology in Electronic Packaging (SIITME);2022-10-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3