The Role of Communication Time in the Convergence of Federated Edge Learning

Author:

Zhou Yipeng1ORCID,Fu Yao2,Luo Zhenxiao2ORCID,Hu Miao2,Wu Di2ORCID,Sheng Quan Z.1ORCID,Yu Shui3ORCID

Affiliation:

1. Department of Computing, FSE, Macquarie University, Macquarie, NSW, Australia

2. School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China

3. School of Computer Science, University of Technology Sydney, Ultimo, NSW, Australia

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Science and Technology Program of Guangzhou

Natural Science Foundation of Guangdong Province

Australian Research Council

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Aerospace Engineering,Automotive Engineering

Reference47 articles.

1. Addressing the straggler problem for iterative convergent parallel ML

2. Asynchronous decentralized parallel stochastic gradient descent;lian;Proc Int Conf Mach Learn,0

3. Federated learning with additional mechanisms on clients to reduce communication costs;yao,2019

4. CMFL: Mitigating communication overhead for federated learning;luping;Proc IEEE 39th Int Conf Distrib Comput Syst,0

5. Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data;jeong;Proc 32nd Conf Neural Inf Process Syst (NIPS) 2nd Workshop Mach Learn Phone Consum Devices (MLPCD 2),0

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Distributed Abstract MAC Layer for Cooperative Learning on Internet of Vehicles;IEEE Transactions on Intelligent Transportation Systems;2024-08

2. Communication cost-aware client selection in online federated learning: A Lyapunov approach;Computer Networks;2024-07

3. Federated Dynamic Client Selection for Fairness Guarantee in Heterogeneous Edge Computing;Journal of Computer Science and Technology;2024-01-30

4. Two-way Delayed Updates with Model Similarity in Communication-Efficient Federated Learning;2023 19th International Conference on Mobility, Sensing and Networking (MSN);2023-12-14

5. Fair DNN Model Selection in Edge AI via A Cooperative Game Approach;2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3