1. B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-efficient learning of deep networks from decentralized data, in: Proceedings of the International Conference on Artificial Intelligence and Statistics, AISTATS’17, pp. 1273–1282.
2. H.H. Yang, A. Arafa, T.Q. Quek, H.V. Poor, Age-based scheduling policy for federated learning in mobile edge networks, in: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’20, pp. 8743–8747.
3. B. Luo, W. Xiao, S. Wang, J. Huang, L. Tassiulas, Tackling system and statistical heterogeneity for federated learning with adaptive client sampling, in: Proceedings of the IEEE Conference on Computer Communications, INFOCOM’22, pp. 1739–1748.
4. J. Perazzone, S. Wang, M. Ji, K.S. Chan, Communication-efficient device scheduling for federated learning using stochastic optimization, in: Proceedings of the IEEE Conference on Computer Communications, INFOCOM’22, pp. 1449–1458.
5. C. Sima, Y. Fu, M.-K. Sit, L. Guo, X. Gong, F. Lin, J. Wu, Y. Li, H. Rong, P.-L. Aublin, et al., Ekko: A large-scale deep learning recommender system with low-latency model update, in: Proceedings of the USENIX Symposium on Operating Systems Design and Implementation, OSDI’22, pp. 821–839.