Robustness Analysis of Discrete State-Based Reinforcement Learning Models in Traffic Signal Control
Author:
Affiliation:
1. Department of Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China
2. Department of College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
China Postdoctoral Science Foundation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Science Applications,Mechanical Engineering,Automotive Engineering
Link
http://xplorestaging.ieee.org/ielx7/6979/4358928/09954324.pdf?arnumber=9954324
Reference39 articles.
1. Dueling network architectures for deep reinforcement learning;wang;Proc Int Conf Int Conf Mach Learn,2016
2. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models;brendel;arXiv 1712 04248,2017
3. A Deep Reinforcement Learning Network for Traffic Light Cycle Control
4. Towards Evaluating the Robustness of Neural Networks
5. Deep reinforcement learning with double Q-learning;hasselt;Proc AAAI Conf Artif Intell,2015
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A survey on deep reinforcement learning approaches for traffic signal control;Engineering Applications of Artificial Intelligence;2024-07
2. BlindLight: High Robustness Reinforcement Learning Method to Solve Partially Blinded Traffic Signal Control Problem;IEEE Transactions on Intelligent Transportation Systems;2024
3. Scheduling Eight-Phase Urban Traffic Light Problems via Ensemble Meta-Heuristics and Q-Learning Based Local Search;IEEE Transactions on Intelligent Transportation Systems;2023-12
4. Improved Deep Reinforcement Learning for Intelligent Traffic Signal Control Using ECA_LSTM Network;Sustainability;2023-09-13
5. Promoting or Hindering: Stealthy Black-Box Attacks Against DRL-Based Traffic Signal Control;IEEE Internet of Things Journal;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3