Improved Deep Reinforcement Learning for Intelligent Traffic Signal Control Using ECA_LSTM Network

Author:

Zai Wenjiao1,Yang Dan1ORCID

Affiliation:

1. College of Engineering, Sichuan Normal University, Chengdu 610101, China

Abstract

Reinforcement learning is one of the most widely used methods for traffic signal control, but the method experiences issues with state information explosion, inadequate adaptability to special scenarios, and low security. Therefore, this paper proposes a traffic signal control method based on the efficient channel attention mechanism (ECA-NET), long short-term memory (LSTM), and double Dueling deep Q-network (D3QN), which is EL_D3QN. Firstly, the ECA-NET and LSTM module are included in order to lessen the state space’s design complexity, improve the model’s robustness, and adapt to various emergent scenarios. As a result, the cumulative reward is improved by 27.9%, and the average queue length, average waiting time, and CO2 emissions are decreased by 15.8%, 22.6%, and 4.1%, respectively. Next, the dynamic phase interval tgap is employed to enable the model to handle more traffic conditions. Its cumulative reward is increased by 34.2%, and the average queue length, average waiting time, and CO2 emissions are reduced by 19.8%, 30.1%, and 5.6%. Finally, experiments are carried out using various vehicle circumstances and unique scenarios. In a complex environment, EL_D3QN reduces the average queue length, average waiting time, and CO2 emissions by at least 13.2%, 20.2%, and 3.2% compared to the four existing methods. EL_D3QN also exhibits good generalization and control performance when exposed to the traffic scenarios of unequal stability and equal stability. Furthermore, even when dealing with unique events like a traffic surge, EL_D3QN maintains significant robustness.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3