Engineering-Informed Design Space Reduction for PCB-Based Power Delivery Networks

Author:

Schierholz Morten1ORCID,Hassab Youcef1ORCID,Schuster Christian1ORCID

Affiliation:

1. Institut für Theoretische Elektrotechnik, Hamburg University of Technology (TUHH), Hamburg, Germany

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. Data-efficient supervised machine learning technique for practical PCB noise decoupling;schierholz;Proc DesignCon,2023

2. Scikit-learn: Machine learning in Python;pedregosa;J Mach Learn Res,2011

3. Power distribution system design methodology and capacitor selection for modern CMOS technology

4. Adam: A method for stochastic optimization;kingma;CoRR,2015

5. Physics-Based Via and Trace Models for Efficient Link Simulation on Multilayer Structures Up to 40 GHz

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensional Reduction by Auto-Encoders in Machine Learning Based Power Integrity Analysis;2024 IEEE 28th Workshop on Signal and Power Integrity (SPI);2024-05-12

2. PCB Based Power Delivery Network Analysis Using Transfer Learning and Artificial Neural Networks;2024 IEEE 28th Workshop on Signal and Power Integrity (SPI);2024-05-12

3. Application of Gaussian Process Regression for Data Efficient Prediction of PCB-Based Power Delivery Network Impedance Features;2024 IEEE 28th Workshop on Signal and Power Integrity (SPI);2024-05-12

4. Automated Generation and Correlation of Physics-Based Via Models with Full-Wave Simulation for an SI/PI Database;2023 IEEE 32nd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS);2023-10-15

5. Foreword Special Section on “Evolving Trends in Electrical Modeling, Validation, and Signal and Power Integrity Analysis in Electronic Packaging and Systems”;IEEE Transactions on Components, Packaging and Manufacturing Technology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3