Eliminating or Shortening the Calibration for a P300 Brain–Computer Interface Based on a Convolutional Neural Network and Big Electroencephalography Data: An Online Study
Author:
Affiliation:
1. School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
2. School of Software, South China Normal University, Guangzhou, China
Funder
STI 2030–Major Projects
Key Realm Research and Development Program of Guangzhou, China
National Natural Science Foundation of China
Technology Innovation 2030
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Biomedical Engineering,General Neuroscience,Internal Medicine,Rehabilitation
Link
http://xplorestaging.ieee.org/ielx7/7333/10031624/10077523.pdf?arnumber=10077523
Reference43 articles.
1. Unsupervised Brain Computer Interface Based on Intersubject Information and Online Adaptation
2. An online semi-supervised P300 speller based on extreme learning machine
3. Learning adaptive subject-independent P300 models for EEG-based brain–computer interfaces;lu;Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intelligence),2008
4. An online semi-supervised brain–computer interface;gu;IEEE Trans Biomed Eng,2013
5. MsCNN: A Deep Learning Framework for P300-Based Brain–Computer Interface Speller
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Electroencephalography-Based Brain–Computer Interface for Emotion Regulation With Virtual Reality Neurofeedback;IEEE Transactions on Cognitive and Developmental Systems;2024-08
2. Task-Relevant Stimulus Design Improves P300-Based Brain-Computer Interfaces;2024-05-04
3. Brain-Computer Interfaces: A Key to Neural Communication's Limitless Possibilities;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01
4. A Relevant Prototype Domain Gradient Projection Continual Learning Method for Cross-Subject P300 Brain-Computer Interfaces;Lecture Notes in Computer Science;2024
5. Transfer Learning for P300 Brain-Computer Interfaces by Joint Alignment of Feature Vectors;IEEE Journal of Biomedical and Health Informatics;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3