Task-Relevant Stimulus Design Improves P300-Based Brain-Computer Interfaces

Author:

Kim Jongsu,Cho Yang Seok,Kim Sung-Phil

Abstract

AbstractObjectiveIn the pursuit of refining P300-based brain-computer interfaces (BCIs), our research aims to propose a novel stimulus design focused on selective attention and task relevance to address the challenges of P300-based BCIs, including the necessity of repetitive stimulus presentations, accuracy improvement, user variability, and calibration demands.ApproachIn the oddball task for P300-based BCIs, we develop a stimulus design involving task-relevant dynamic stimuli implemented as finger-tapping to enhance the elicitation and consistency of event-related potentials (ERPs). We further improve the performance of P300-based BCIs by optimizing ERP feature extraction and classification in offline analyses.Main ResultsWith the proposed stimulus design, online P300-based BCIs in 37 healthy participants achieves the accuracy of 91.2% and the information transfer rate (ITR) of 28.37 bits/min with two stimulus repetitions. With optimized computational modeling in BCIs, our offline analyses reveal the possibility of single-trial execution, showcasing the accuracy of 91.7% and the ITR of 59.92 bits/min. Furthermore, our exploration into the feasibility of across-subject zero-calibration BCIs through offline analyses, where a BCI built on a dataset of 36 participants is directly applied to a left-out participant with no calibration, yields the accuracy of 94.23% and the ITR of 31.56 bits/min with two stimulus repetitions and the accuracy of 87.75% and the ITR of 52.61 bits/min with single-trial execution. When using the finger-tapping stimulus, the variability in performance among participants is the lowest, and a greater increase in performance is observed especially for those showing lower performance using the conventional color-changing stimulus.SignficanceUsing a novel task-relevant dynamic stimulus design, this study achieves one of the highest levels of P300-based BCI performance to date. This underscores the importance of coupling stimulus paradigms with computational methods for improving P300-based BCIs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3