PIPE-CovNet: Automatic In-Pipe Wastewater Infrastructure Surface Abnormality Detection Using Convolutional Neural Network
Author:
Affiliation:
1. iPipes Lab, UTS Robotics Institute, University of Technology Sydney, Sydney, NSW, Australia
2. Department of Computer Science, Aalborg University, Aalborg, Denmark
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7782634/10077422/10075340.pdf?arnumber=10075340
Reference22 articles.
1. Vision-Based Defect Inspection and Condition Assessment for Sewer Pipes: A Comprehensive Survey
2. An Intelligent Sewer Defect Detection Method Based on Convolutional Neural Network
3. Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs;ding;Proc IEEE Conf Comput Vis and Pattern Recog,0
4. Very deep convolutional networks for large-scale image recognition;simonyan;Proc Int Conf Learn Representations,0
5. A Survey on Image-Based Automation of CCTV and SSET Sewer Inspections
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning for Pipeline Interior Defect Classification: A Comparative Study of Polar and Cartesian Coordinate Representations;2024 IEEE Symposium on Industrial Electronics & Applications (ISIEA);2024-07-06
2. PIPE-CovNet+: A Hyper-Dense CNN for Improved Pipe Abnormality Detection;IEEE Sensors Letters;2024-04
3. Robotic Guide Dog for Real-time Indoor Object Detection and Classification with Localization;2024 IEEE Applied Sensing Conference (APSCON);2024-01-22
4. Robotics and Sensing for Condition Assessment of Wastewater Pipes;Infrastructure Robotics;2023-12-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3